YES 0.721 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Main
  ((sequence_ :: Monad b => [b a ->  b ()) :: Monad b => [b a ->  b ())

module Main where
  import qualified Prelude



Lambda Reductions:
The following Lambda expression
\_→q

is transformed to
gtGt0 q _ = q



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Main
  ((sequence_ :: Monad a => [a b ->  a ()) :: Monad a => [a b ->  a ())

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Main
  ((sequence_ :: Monad b => [b a ->  b ()) :: Monad b => [b a ->  b ())

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule Main
  (sequence_ :: Monad a => [a b ->  a ())

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(vy40, vy41), vy5) → new_psPs(vy41, vy5)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(vy300, vy301), vy4, ba) → new_gtGtEs(vy301, vy4, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_foldr(:(vy30, vy31), ty_[], ba) → new_foldr(vy31, ty_[], ba)
new_foldr(:(vy30, vy31), ty_IO, ba) → new_foldr(vy31, ty_IO, ba)
new_foldr(:(vy30, vy31), ty_Maybe, ba) → new_foldr(vy31, ty_Maybe, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ QDPSizeChangeProof
                        ↳ QDP
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldr(:(vy30, vy31), ty_Maybe, ba) → new_foldr(vy31, ty_Maybe, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ QDPSizeChangeProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_foldr(:(vy30, vy31), ty_IO, ba) → new_foldr(vy31, ty_IO, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
QDP
                          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldr(:(vy30, vy31), ty_[], ba) → new_foldr(vy31, ty_[], ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: